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Abstract This paper presents a practical fuzzy controller

two axes solar tracking-based realization on digital FPGA

hardware. The fuzzy logic control is based according to

Mamdani rules, alpha levels, max–min operations and

defuzzification method. Operations and algorithms are

reduced using look-up tables for the membership values

which are stored as digital values and accessed to the

control process. The feasibility and versatility of the pro-

posed technique as well as its potential as a low-cost design

for solar tracking control on digital field-programmable

gate array (FPGA) are shown by simulated and experi-

mental results in a photovoltaic system under different

operation conditions. The proposed realization exhibits

good performance related to the control and efficiency.

Keywords Sun tracking � Fuzzy logic control � Alpha

levels � FPGA � Mamdani rules � max–min � Look-up

tables � Photovoltaic system (PV)

1 Introduction

Solar energy received every 10 days on Earth equals all the

known reserves of oil, coal and gas. Mexico receives high-

quality solar power in more than half of its territory:

G = 1000 W/m2 on average in states of high insolation.

The use of this source of useful energy aims generally

detach from the continued use of fossil fuels, allowing

savings in non-renewable energy and in addition to amor-

tize the environmental impact [1–3]. In the other hand, the

quantity of electricity that can be generated by a solar PV

system depends on a number of factors, including the solar

resource available at the installation location measured as

the insolation, ambient conditions such as temperature,

wind speed, dust and cloud cover, spectral distribution of

incident radiation, angle of incidence of solar radiation and

operational efficiencies of system components [4–7]. So, in

PV systems, one of the most important decisions is to select

the best control technique suited to the requirements and

feasibility of the proposed design approach. The decision

of this logic element is high enough for serving as a good

demonstrator that can be implemented by a selected

hardware [8, 9]. The implementation can be done using

general-purpose processors which depend fully on software

for the realization or adapting a general-purpose processor

to perform dedicated fuzzy instructions. The approach is a

trade-off between speed and complexity. An alternative is

using an exclusive hardware to perform the fuzzy opera-

tions as a closely related approach through dedicated fuzzy

circuits or application-specific integrated circuits (ASICs).

The approach leads to relatively high-speed operation, but

is more costly. FPGAs are hardware devices used as user-

programmable ASICs. These devices have the availability

of software tools to generate efficient and flexible hardware

description, also brings easiness to the reconfiguration
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Estado de México, Mexico
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process. Moreover, FPGA designs can already be modeled,

simulated and verified [10].

In the other hand, novel fuzzy control methods have

been developed and implemented as a programming plat-

form to control different processes in different areas [11].

So, one of the mathematical disciplines with the highest

number of followers is the fuzzy logic technique, which is

the logic that uses expressions that are neither completely

true nor completely false, i.e., is the logic applied to con-

cepts that can take any truth value in a set of values ranging

between two extremes, absolute truth and complete falsity

[9, 12–16]. Due to their heuristic nature associated with

simplicity and effectiveness, for both linear and nonlinear

systems, the fuzzy logic controller (FLC) has showed their

outstanding features in implementations for solar tracking

systems [17–19]. Monitoring tracking systems can be

classified based on their movement. This can be a single

axis or two axes. In the case of a single-axis mode, the

motion can be in various ways: east–west, north–south or

parallel to the earth’s axis [20–22].

The main purpose of this work is to implement and

demonstrate a practical solar tracking on digital FPGA

hardware, reducing operations and hardware in each stage

of the FLC which is designed based on Mamdani rules,

max–min operations and alpha levels for the defuzzifica-

tion, and Sect. 2 describes the sun tracking system and

stages of the fuzzy logic control that involve the parameters

and characteristics that would guarantee the correct oper-

ation of this control technique for its implementation on

FPGA. In Sect. 3, a comparison between experimental

results obtained and simulated using MATLAB is made.

Conclusions are presented in Sect. 4.

2 Sun tracking system

The sun tracking system is implemented using sensors of

sun intensity which are the input to the FLC which is

designed and implemented on FPGA using Mamdani

method and actuators which consist of two servomotors

that perform the control action. Figure 1a, b shows the

block diagram of the overall system. Data acquisition is

carried out by four ambient light sensors which convert

light intensity into digital output values. Two of these

sensors (S1 and S2) are used to obtain the digital output

values labeled as Ds1 and Ds2. Then, with these values

through mathematical operations, the error e1 and deriva-

tive of the error de1 are obtained. These sensors are used to

determine the orientation for solar altitude angle. Same

manner, the sensors S3 and S4 are used to obtain the digital

output values labeled as Ds3 and Ds4, used to obtain the

error e2 and derivative of the error de2, which determine

the orientation for solar azimuth angle. Figure 1b shows in

more detail the internal structure of the acquisition block.

Signals e1, e2, de1 and de2 are in turn inputs to the fuzzy

logic controller, where k is the sampling time, e(k) repre-

sents the present value of the error and e(k - 1) the last

value of the error. These values are stored in internal

registers which are accessed via SPI (Serial Peripheral

Interface). SPI serves as interface from data acquisition to

the FLC. The FLC block contains the programmed syn-

taxes in VHDL code for the stages of the FLC. The Outputs

of the FLC are the control actions for the servomotors.

These values are sent to servomotors through the RS-232

protocol in digital mode. This protocol contains the com-

mands for positioning according to the own configuration

of each servomotor, which performs the control action for

the azimuth and altitude angles. Also, this protocol realizes

the synchronizing between data output of the FLC and the

rotation mechanisms of the servomotors. Finally, Fig. 2

shows the internal blocks of the FLC that consist of

fuzzification, inference, rules and defuzzification stages

which in turn perform the control actions for the solar

rotation mechanism on two axes. One of them rotates in the

solar altitude angle and the other in the solar azimuth angle.

So, the novelty of the paper is to implement a control using

fuzzy logic techniques in hardware, on FPGA platform in

particular. Also, operations in the controller process are

reduced using look-up tables and alpha level in the con-

troller stages. For example, operations as described by

Eq. 1 is solved using a spreadsheet on a pc whose resultant

values are captured in look-up tables. These values are

(a)

(b) Digital outputs of sensors:
Ds1, Ds2, Ds3, Ds4

SPI Protocol

F
L
C

k: Sampling Time
e: error
de: derivative of 
the error

Data 
Acquisition SPI protocol

FLC

RS-232 
Protocol

Servomotors

Solar Rotation Mechanism

Internal Structure of the 
FPGA programs

Fig. 1 System diagram. a Diagram for the sun tracking system.

b Data acquisition for de FLC
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accessed in subsequent stages involving the control

implementation on FPGA. This reduces the operations that

resolve the FLC on the FPGA. Another advantage using

fuzzy techniques for a solar tracking control is that it does

not require a previous modeling, only the experience of an

operator. In this case, the inputs were obtained using solar

sensors and the outputs were obtained through Eqs. (1–7),

for the azimuth and altitude angles.

2.1 Solar radiation

In order to estimate the solar radiation potential for the

particular case in Mexico City, we have [23]:

The equation time is given by

ET ¼ 9:87 sin 2Bð Þ � 7:53 cos Bð Þ � 1:5 sin Bð Þ min½ �. . .
ð1Þ

where B ¼ N � 81ð Þ 360
364

The general equation to calculate the apparent solar time

(AST) is:

AST ¼ LST þ ET � 4 SL � LLð Þ � DS, ð2Þ

where LST = official local time or standard, ET = equa-

tion of time, SL = standard length, LL = local length,

DS = daylight saving.

Decline is given by:

d ¼ 23:45 sin
360

365
284 þ Nð Þ

� �
ð3Þ

The decline can be given in radians:

d ¼ 0:006918 � 0:399912 cos sð Þ þ 0:70257 sin sð Þ
� 0:006758 cos 2sð Þ þ 0:000907 sin 2sð Þ
� 0:002697 cos 3sð Þ þ 0:00148 sin ð3sÞ;

ð4Þ

where s is called the daily angle, given (in radians) by:

s ¼ 2p N � 1ð Þ
365

Hour angle

h ¼ � 25 number of minutes from local solar noonð Þ ð5Þ
LST ¼ 12 � ET � 4 SL � LLð Þ ð6Þ

Angle of incidence, h cos hð Þ ¼ sin Lð Þ sin dð Þ cos bð Þ
� cos Lð Þ sin dð Þ sin bð Þ cos ZSð Þ
þ cos Lð Þ cos dð Þ cos hð Þ cos bð Þ
þ sin Lð Þ cos dð Þ cos hð Þ sin Bð Þ Zsð Þ
þ cos dð Þ sin hð Þ sin bð Þ sin Zsð Þ;

ð7Þ

where b ¼ Solar tilt angle.

The servomotors used as actuators were the AX-12

which have a resolution of 0.35�, and the operating range

for the position is limited to 0–300�, for each one, as shown

in Fig. 3. This range is represented by digital values from 0

to 1023. Also, servomotors are able to send parameters in

packets like temperature at which they are operating like

torque and movement speed through the RS-232 or RS-245

protocol with a transfer rate up to 1Mbps. It can operate at

a supply voltage from 7 to 10 V.

The communication protocol is controlled by the main

controller (FLC) which synchronizes the transmission

speed, the structure of the sending packets and the state of

received packets according to the transmitted command.

After sending the instruction to the servomotor, this returns

either a status packet error or the corresponding requested

action. One advantage of this type of servomotors lies in

individual identifiers that can be set for each servomotor.

With this, everyone can operate with the same protocol in

continuous sequence from the main control defined in the

package to the individual identifier for which the action

command is assigned, as shown in Fig. 4.

The instruction packet structure is as follows:

0 � FFj j 0 � FFj j IDj j Lengthj j Instructionj j Parameter 1j j
� � � Parameter Nj j Check Sumj j;

DefuzzificationInference System

Rules

FuzzificationData 
Input

Data 
Output

FLCFig. 2 Fuzzy logic control

(FLC)
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where

• The first two bytes indicate to the actuator that a

package is on the way.

• ID: The number that identifies the actuator can take a

range of values from 0 to 254.

• Length: The length of the packet is given by ‘‘Number

of parameters ? 2’’

• Instruction: The statement that depends on the type of

parameter to be sent can be read or written.

• Parameter 1 … N is used if the instruction requires

additional information in the package.

• Check Sum: This value is calculated by the following

equation:

Chek Sum ¼ � ID þ Length þ Instructionð
þ Parameter 1 þ � � � Parameter NÞ

ð8Þ

If the calculated Check Sum value is greater than 255,

then the two least significant bytes are taken to set this

value. For the communication to the FPGA, the same

packet structure is implemented using the RS-232 protocol.

Also, the timing for sending the control action dictated by

the fuzzy controller is achieved. The data sequence sent is

in packets of 8 bits, which are required to implement the

RS-232 protocol in the FPGA. These packages are pre-

calculated and accessed via look-up tables. The schematic

blocks for the acquisition data of the sun tracking system

implemented on FPGA is shown in Fig. 5.

2.2 Fuzzification

We define the input error ei (representing e1 or e2) by five

fuzzy variables ei (i = 1, 2, 3, 4, 5), which conform to the

linguistic variables, labeled PB (positive big), PS (positive

small), ZO (zero), NS (negative small) and NB (negative

big). Also, for the derivative error, we define the input dei
(representing de1 or de2) by five fuzzy variables dej
(j = 1,2,3,4,5), which conform to the linguistic variables,

labeled PB (positive big), PS (positive small), ZO (zero),

NS (negative small) and NB (negative big). The output

fuzzy variable or the control quantity also uses five fuzzy

variables which are described by fuzzy linguistic control

quantities Axk (k = 1, 2, 3, 4, 5), partitioned on the control

universe from 0 to 1023, which is proposed due to the

movement of the servomotors because they have 1024

possible values with a range of motion from 0� to 300�,
where 0� is represented by a digital value of 0� and 300� by

1023. Figure 6 shows the membership functions in the

universe of discourse for the input and output variables.

In this case, because the sensors have a resolution of 8

bits (2n - 1), the universe of discourse for the two input

variables (e1, de1) is partitioned from - 127 to 127, which

represents the ranges - 150� B e B 150� and

- 150� B de B 150�, where e is measured in degrees and

de is measured in degrees per second. So, the maximum

value e1(k) = Ds2 - Ds1 can be either negative or posi-

tive. Depending on whether Ds2 is greater than Ds1, the

result is a positive number, otherwise if Ds1 is greater than

Ds2, the result is a negative value.

The output of the sensors to detect or not lighting, are in

turn, the data used to determine the error and derivative of

the error as indicated in Fig. 1b. The error is obtained by:

e1ðkÞ ¼ Ds2 kð Þ � Ds1 kð Þ ð9Þ

This manner, assuming that at a certain sampling time k,

the sensor 2 has a value Ds2 = 0 and the sensor 1,

Ds1 = 127, and substituting in (9),

(Goal Posicion=[0x1ff]
150

(Goal Posicion=[0x3ff]
300 (Goal Posicion=[0]0300-360

Invalid Angle

300°
Goal Position=[0x3ff] Goal Position=[0]

0°

Fig. 3 Range of motion of the servomotor AX-12

Fig. 4 Communication

between devices
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e1(k) = 0 - 127 = - 127. Now, for the same sampling

time k, the sensor 2 has a value Ds2 = 127 and the sensor

1, Ds1 = 0, substituting in (9), e1(k) = 127 - 0 = ? 127.

Hence, the range is selected for the universe of discourse

for the input variables e1 and e2.

For the derivative of the error, it is defined by:

de1 ¼ e1ðkÞ � e1ðk � 1Þ ð10Þ

The same approach is supposed to define its universe of

discourse. This is, if at any sampling time k, the current

error has a value e(k) = 0 and e(k - 1) = 127, substitut-

ing in (10), de1 = 0 - 127 = - 127. In the case, if

e(k) = 127 and e (k - 1) = 0, substituting in (10),

de1 = 127 - 0 = ? 127. This defines the range of the

second input variable to the controller, which is de1 and

de2.

For the output variables Ax1 and Ax2, the same lin-

guistic variables are adopted, but with a different range for

each fuzzy set as defined below:

NB Negative big represents the fuzzy set in the range [0,

256]

NS Negative small represents the fuzzy set in the range

[0, 512]

Z Zero represents the central fuzzy set within the

interval [256, 768]

PS Positive small represents the fuzzy set within the

interval [512, 1023]

PB Positive big represents the fuzzy set on the interval

[768, 1023]

SCLK P_SCLK
SCLK2 P_SCLK2
SCLK3 P_SCLK3
SCLK4 P_SCLK4 data in1[7:0]

P_SDATA1 P_SDATA1 data ac1[7:0] data_s1 [7:0] data in2[7:0] result e1[9:0]
P_SDATA2 P_SDATA2 data ac2[7:0] data_s2[7:0] P_rst rst5
P_SDATA3 P_SDATA3 data ac3[7:0] Deriva�ve error
P_SDATA4 P_SDATA4 data ac4[7:0]

clk2 nCS P_Ncs
rst2 nCS2 P_Ncs2

nCS3 P_Ncs3
nCS4 P_Ncs4
sync_clk_out data in3[7:0]

data in4[7:0] result e2[9:0]
rst51

DATA_ACQUISITION Fuzzy process
REST S4_S3

rest_error

rest_error2

REST S2_S1

Fig. 5 Schematic blocks for the acquisition data

NB NS Z PS PB

-127 -64 0 63 127

Fig. 6 Membership functions

for input and output variables
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The membership function chosen for the FLC is trian-

gular as shown in Fig. 6, which is given by the parameters

a, b, c, d as follows:

triangleðx; a; b; cÞ ¼

0; x� a
x� a

b� a
; a� x� b

c� x

c� b
; b� x� c

0; c� x

8>>>><
>>>>:

ð11Þ

Using max–min operators, (11) can be represented as:

triangleðx; a; b; cÞ ¼ max min
x� a

b� a
;
c� x

c� b

� �
; 0

� �
ð12Þ

Once the membership function is selected with the

required parameters, the values of membership function for

each fuzzy set are obtained. For this, alpha-levels method is

used, which is based according to Fig. 7, where l(x) is the

membership value reached for each fuzzy set in the X uni-

verse for any input. Each alpha level consists of x0 and xf
which are the initial point value (alpha-level initial) and the

final point value (alpha-level final) [24].

Table 1 shows the fuzzy sets for each input e1 and de1,

where Wnx and Wny are the weight vectors containing the

membership functions in the universe of discussion for

both inputs. Figure 8 shows the flowchart for the fuzzy

process, where an iterative cycle is used to find and obtain

the membership values by increasing a variable (i) from

zero to n (n is the number of bits used to represent all

membership values; in this case, from 0 to 255 for each

fuzzy set, this is represented by an array of 256 alpha

levels).

Then, using (12), membership values are obtained for

the input variable in question, either for input (e1, e2, de2

and de1) or output (Ax1 and Ax2). For example, for a value

e1 = 115 which represents a rigid value [variable x in

(12)], the membership function for PS set, whose param-

eters have the values a = 0, b = 63 and c = 127, is:

triangleðx; a; b; cÞ ¼ max min
115 � 0

63 � 0
;
127 � 115

127 � 63

� �
; 0

� �

¼ 0:1875

So, l(x) = 0.1875 is the membership value for that rigid

input value x, in the fuzzy set PS. This is a floating point

value that involves the use of more resources for its

implementation in hardware. Therefore, a way to convert it

to an integer value is using the following equation:

l xð Þ ¼ Eq: 12ð Þfloating point�2n � 1
h i

¼ l xð Þinteger value;

ð13Þ

where 2n - 1 is the resolution (8 bits) for the system

proposed. On substituting the membership value obtained

and using (13), the membership value is:

l xð Þescaled¼ 0:1875 � 127 ¼ 23:8 ffi 24

This manner, the membership value scaled for e1 = 115

is l(x) = 24. This procedure is followed for each universe

of discourse for the inputs and outputs. The values obtained

are stored in look-up tables in the FPGA through internal

program. Thus, the design application running does not

have to calculate the membership value on chip. As an

example, the VHDL code to obtain all membership values

for NB set is:

type Negative_Big is array (a to c) of integer range 0 to

2n - 1.

constan f_m1:Negative_Big: = (a =[0,1 =[6,2 =[12,4

=[18,….,c =[2n - 1);

for i in a to c loop

if (x = i) then

l(x) = f_m1(i)

end if;

end loop;

where a and c are the parameters of the membership

function given by (12).

2.3 Rules

In a fuzzy logic controller a descriptive verbal rules If–

Then are used to describe the relation among inputs and

outputs, according to:

R lð Þ : IF x1 is F
l
1 and. . .and xn is F

l
n THEN y is Gl ð14Þ

Where

(x1…xn) Represent the input variable

(y) Represent the output variableFig. 7 Membership function using alpha-levels method for

fuzzification

Table 1 Weight vectors matrix for input and output e1 and de1

Inputs Vectors mf_1 mf_2 mf_3 mf_4 mf_5

Data e1 Wnx= Wnx_1 Wnx_2 Wnx_3 Wnx_4 Wnx_5

Data de1 Wny= Wny_1 Wny_2 Wny_3 Wny_4 Wny_5
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(FyG) Represent the membership function of the fuzzy

set

So, according to (14) and Mamdani method, 25 rules

are generated. Each rule is obtained through the combi-

nation of each fuzzy set contained in the universe of dis-

course of the input (e1), with each fuzzy set contained in

the universe of discourse of the input (de1), and then this

combination is related to an output (Z), according to (14).

Each rule is translated into a fuzzy relation which results in

linguistic variables as shown in Table 2, which describe the

relationships between rules for inputs e1 and de1. The same

method is used for inputs e2 and de2.

2.4 Inference

Inference matrix is obtained by combining the weight

vectors Wnx and Wny through the min operator according

to Mamdani method [25–28]:

lA!B x; yð Þ ¼ min lA xð Þ; lB yð Þ½ � ð15Þ

It involves the comparison between two membership

values reached in each rule and selecting the minimum

value using (15). This is the first membership value of the

input e1 which is compared with each membership value of

the input de1 and so on. The process is done for all fuzzy

set according to Table 1. Then, in order to program the

inference process on the FPGA, a matrix is programmed

which is used to store the minimum membership functions

extracted according to (15). From now, this matrix will be

referred as the membership values because it will be the

result of the all rules with membership values different to

zero or not, which corresponding to the membership

function for the control action. Figure 9 shows the

START

Data_e1=fm_1(i)

Data_e1, a, c

Wnx_1=0

i=i+1

END

Wnx_1=fm_1(i)
FALSETRUE

Fig. 8 Flow diagram for the

fuzzification process

Table 2 Fuzzy logic rules for the FLC

e1 de1

NB NS Z PS PB

NB NB NS NS NS NS

NS NS Z PS NS Z

Z NS PS Z PB PS

PS Z PSP PS Z PS

PB PS PS PS PS PB

START -Inference process

Wnx, Wny

j=j+1

END

FALSETRUE

i=1

j=1

i=i+1

Fig. 9 Flowchart for the

inference process
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min 11[7:0]
min 12[7:0]
min 13[7:0]
min 14[7:0]
min 15[7:0]
min 21[7:0]
min 22[7:0]

fm �ck[9:0] min 23[7:0]
wk1[7:0] min 24[7:0]
wk2[7:0] min 25[7:0]
wk3[7:0] min 31[7:0]
wk4[7:0] min 32[7:0]
wk5[7:0] min 33[7:0]
wk6[7:0] min 34[7:0]
wk7[7:0] min 35[7:0]
wk8[7:0] min 41[7:0]
wk9[7:0] min 42[7:0]

wk10[7:0] min 43[7:0]
min 44[7:0]
min 45[7:0]
min 51[7:0]
min 52[7:0]
min 53[7:0]
min 54[7:0]
min 55[7:0]

fm �ck[9:0]
wk1[7:0]
wk2[7:0]
wk3[7:0]

clk6 wk4[7:0]
data de1[9:0] wk5[7:0]
data e1 [9:0] wk6[7:0]

rst6 wk7[7:0]
wk8[7:0]
wk9[7:0]
wk10[7:0]

min 11[7:0]
min 12[7:0]
min 13[7:0]
min 14[7:0]
min 15[7:0]
min 21[7:0]
min 22[7:0]

fm �ck[9:0] fm �ck[9:0] min 23[7:0]
wk1[7:0] wk1[7:0] min 24[7:0]
wk2[7:0] wk2[7:0] min 25[7:0]
wk3[7:0] wk3[7:0] min 31[7:0]

clk6 wk4[7:0] wk4[7:0] min 32[7:0]
data de1[9:0] wk5[7:0] wk5[7:0] min 33[7:0]
data e1 [9:0] wk6[7:0] wk6[7:0] min 34[7:0]

rst6 wk7[7:0] wk7[7:0] min 35[7:0]
wk8[7:0] wk8[7:0] min 41[7:0]
wk9[7:0] wk9[7:0] min 42[7:0]
wk10[7:0] wk10[7:0] min 43[7:0]

min 44[7:0]
min 45[7:0]
min 51[7:0]
min 52[7:0]
min 53[7:0]
min 54[7:0]
min 55[7:0]

Inference process

Inference process

Fuzzifica�on process

Fuzzifica�on process

From
acq.
data

To aggreg
process

To aggreg
process

From
acq.
data

Fig. 10 Schematic blocks for the fuzzification and inference process
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flowchart for the process. All membership values are stored

in the matrix.

The schematic blocks for the fuzzification and inference

processes implemented on the FPGA are shown in Fig. 10.

2.5 Aggregation

The aggregation stage is carried out by the method of

maximum membership value for each rule in the inference

stage whose value is different to 0, given by:

lBl yð Þ ¼ max lFl
1
x1ð Þ; . . .; lFl

n
xnð Þ

h i
ð16Þ

It represents the union of the activated rules for each

column contained in the matrix. In this case, five columns

take into account only those rules that have a nonzero

value. For this case, all values contained in a column are

compared and the maximum value is selected as shown in

Table 3. The arrows indicate the direction of the process to

get the maximum. The process is performed for each col-

umn. The values obtained for each column represent the

aggregation vector which is used for the defuzzification

stage. This stage converts the fuzzy value to a real scalar

value or rigid value. The flowchart for aggregation algo-

rithm is shown in Fig. 11, where a vector called ‘‘agreg’’

stores the maximum membership values for each column.

These membership values represent the output fuzzy sets.

2.6 Defuzzification

Defuzzification process is realized by the center of gravity

according to [25–28]:

Z ¼
PM

l¼1 y
�l lB0 yð Þð ÞPM

l¼1 lB0 yð Þð Þ
; ð17Þ

where y-1 represents the center of the aggregation vector

and lB0(y) is the maximum membership value searched by

the process.

This method requires M = 2n - 1 iterations according

to the input universe and is given by 2n, where n is the

number of bits used for the resolution [29]. Another

method used in this work is the center average portions

areas (COSAA) [24]. This method is suited for working

with alpha levels and requires only amax iterations, given

by:

zCOSAA ¼

Pamax

i¼0

x
af
f
�x

ai
0ð Þ

2
þ xai0

� �

amax

ð18Þ

where amax is the highest membership value reached by the

aggregation vector obtained in the aggregation stage.

This method takes into account the averages of the

corresponding alpha levels and yours initial point value

(alpha-level initial) and final point value (alpha-level final)

for each output set contained in the aggregation vector.

Then, using (18), the defuzzification values are obtained.

3 Experimental results

In order to verify the results, the FLC for two axes solar

tracking on FPGA was tested through a scaled prototype

which is shown in Fig. 12. The solar array is made up of

three solar cells of 3.3 volts at 150 mA each. The module is

mounted on a shaft profile base in which is anchored the

servomotor for the rotation altitude axis and on this, is

anchored the servomotor for solar azimuth rotation, as

shown in Fig. 12. The sensors are mounted on a plastic

base with a lid, which serves as a barrier between them.

The bases are coupled through hydraulic pvc pipes in order

to protect the cables from the bases to the box, where the

FPGA Nexys2 is located, as shown in Fig. 13. This array

allows to determine the error with more accuracy. Also, the

Nexys2 board was shielded in a plastic enclosure

40 9 20 9 6 cm, with perforations for the cables and

sensors connection.

Table 3 Process sequence for

aggregation
e1

NG NP Z PP PG

De1

NG Wn_rules (1,1) Wn_rules (1,2) Wn_rules (1,3) Wn_rules (1,4) Wn_rules (1,5)

# # # # #
NP Wn_rules (2,1) Wn_rules (2,2) Wn_rules (2,3) Wn_rules (2,4) Wn_rules (2,5)

# # # # #
Z Wn_rules (3,1) Wn_rules (3,2) Wn_rules (3,3) Wn_rules (3,4) Wn_rules (3,5)

# # # # #
PP Wn_rules (4,1) Wn_rules (4,2) Wn_rules (4,3) Wn_rules (4,4) Wn_rules (4,5)

# # # # #
PG Wn_rules (5,1) Wn_rules (5,2) Wn_rules (5,3) Wn_rules (5,4) Wn_rules (5,5)
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The location where the tests were done is located in

19.33235925� north latitude and 99.18087544 longitude—

east. Figures 14 and 15 show the graphs of solar angles for

latitude and longitude for this location [23].

Experimental tests were made from 10:00 a.m. to 17:00

p.m. Furthermore, the resulting comparative graphs are in

these intervals. First step was to test the synchronization in

the system. Figure 16 shows the pulse Cs used to syn-

chronize the data conversion from the light sensors to the

FLC. As can be seen, there is a distortion which is due to

noise environment or other external factor; however, it

does not represent any problem to activate the conversion.

Figure 17 shows the range of serial data sent by the sensors

to the FPGA. Also, it has distortion in their construction;

Fig. 11 Flow diagram for the aggregation process
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however, this does not affect the data acquisition stage.

Figure 18 shows the data packet serially obtained at the

output of the fuzzy controller, which is sent to the servo-

motor 1 for performing the control action. The result is

similar to the second servomotor.

Figures 19 and 20 show the comparison between cal-

culated and experimental results for azimuth and altitude

angles obtained. The error is the deviations that exist

between the two curves, both for those of Fig. 19 and for

those of Fig. 20. The curve labeled ‘‘azimuth cal’’ was

obtained theoretically using the equations of the solar

angles, while the curve labeled ‘‘azimuth FLC’’ was

obtained with the proposed FLC implemented in the solar

panel system. Similarly, it is for Fig. 20, but for altitude

angle. The most significant changes occur between 13:00

p.m. and 15:00 p.m. for both solar altitude and azimuth

angle because in this period clouds were passing and block

the light sensors which determine the input error to the

fuzzy logic controller. As can be seen in both figures, the

controller performs the control action with minimal errors,

which for this application are quite good, since it is able to

maintain, during the day, the solar panel always with the

incidence of the rays of the sun at 90�, regardless of

obstructions due to clouds or external factors. The exper-

imental results were obtained with real time.

Simulated and experimental values measured at the

output of the FLC for the sun tracking are shown in

Table 4. These values are compared with simulated results

using MATLAB toolbox. The test setup consisted of inputs

e1 and de1 with values in the range of – 127–127 (first

column in Table 4) and the defuzzified output with the

method of mass center (column 2), alpha levels (column 3)

and centroid. The mass center and centroid were obtained

from the MATLAB toolbox. It should be mentioned that

the FLC tests implemented in the FPGA were made using

alpha levels. For each pair of input values (e1, de1), the

results of each defuzzification method are shown in col-

umns 2, 3 and 4. As can be seen, according to output

values, the proposed design does not present a significant

variation and does not affect the control action referred to

the sun tracking, maintaining the solar incidence at 90�
with respect to the plane of the PV system. The difference

between them is less than 5% for all parameters over a full

range contained in the universe of discussion. It can be

concluded that the values obtained with the proposed FLC

have a good approximation based on the theoretical and

Servomotor 
foraltituderotation

Servomotor for 
azimut rotation

Fig. 12 Sun tracking prototype

Fig. 13 FPGA Nexys2 in box

Fig. 14 Solar azimuth angles at

November 9, 2014
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simulated results. The stability is obtained when the con-

troller reaches the convergence, that is, when the approx-

imation error in the desired control action is minimal. The

robustness of this system in terms of hardware is tested

with the family of FPGA developed and designed by

Diligent. The robustness in this case consists in performing

the control action of the sun tracking on two axes, even

with interfering signals in the system, because the FLC

itself adapts it in each iteration.

4 Conclusions

This paper provides a new implementation of a FLC on

FPGA for two axes sun tracking which resembles servo-

motors to control a PV system. The most important target

of this work is a demonstration of a hardware design on

FPGA for a sun tracking in order to increase the solar

radiation received by a PV system. The fuzzy logic control

is used to estimate the sun position at different conditions

Fig. 15 Solar altitude angles at

November 9, 2014

Fig. 16 Pulse Cs used to synchronize the data conversion from the sensors lighting to the FLC
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in a day. The present approach proves that the fuzzy con-

trol design has a good performance and reduces the total

number of operations, because look-up tables replace

adders, multipliers and delay elements. Measurements at

the input and output terminals indicate that there are dis-

tortions by external effects such as noise; however, these

do not directly affect the performance of the controller. All

simulation and experimental results demonstrate the

Fig. 17 Serial data sent by the sensors to the FPGA

Fig. 18 Data packet serially obtained at the output of the FLC
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effectiveness of the FLC in the PV system. Moreover, it

was observed that the resolution with the servomotors used

is highest in terms of requirements involving solar tracking.

Also, because the movement of the sun is slow, the pro-

cessing speed of the FPGA contributes to a better response

of the system control. It can be concluded that the values

obtained with the proposed FLC have a good approxima-

tion based on the theoretical and simulated results. So, the

FLC can be used to estimate the sun tracking of a wide

variety of PV systems. This approach leads to an efficient

sun tracking.
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Table 4 Comparison between different defuzzification methods

Inputs

e1, de1

Mass centers Alpha levels Centroid MATLAB

- 127 - 127 0 0 81.9

- 100 - 100 141 155.5 213

- 92 - 85 197 170 238

- 35 - 25 411 384 391

- 15 - 10 472 384 484

25 25 613 640 618

35 40 665 640 661

50 75 796 843.5 768

60 90 843 858.5 768

70 95 862 863.5 770

85 100 883 868.5 788

110 100 883 868.5 830

127 115 954 883.5 934

127 127 1023 1023 942

Fig. 19 Comparison between

the azimuth angle calculated

and obtained by the fuzzy logic

controller
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Fig. 20 Comparison between

the altitude angle calculated and

obtained by the fuzzy logic

controller
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